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1 Introduction

There are many approaches to autonomous vehicle path planning in uncertain environments.
One approach is to split the problem into two sub problems; one of planning position and one
of planning velocity. [5, 6] This paper deals only with local situations where a path planning
algorithm is already known. We use path following to smooth out the vehicle motion turning
the complex maximization problem into one of path following.

The planned path should be given as a leading equation of position, velocity pairs of the
form:

L(t) =
[
P̄ (t), V (t)

]
=
[
P̄0, V0

]
,
[
P̄1, V1

]
, . . . ,

[
P̄t, Vt

]
(1)

We can look at how the path following algorithm has to change at any moment in time; this
results in the following ODE:

F ′(t) =
[
RP × λ̄(L̄P (t), F̄P (t)), RV × λ(LV (t), FV (t))

]
(2)

F (0) = F ′(0) = [[0, 0] , 0]

Where RP and RV are the constant rates at which we change position and velocity respec-
tively. The initial conditions are [[0, 0], 0] if we consider position and velocity as relative.
We assume a value of 0 if ever L(t) = F (t).

This differential equations can be solved for F̄P (t) and F̄V (t) in special cases but not
general solution exists. They will be analyzed in specific cases during common driving to see
what properties are necessary for the leading functions L̄P and L̄V and if this is a feasible
application for path following.

1.1 Autonomous Vehicle Motion

The derived functions F̄P (t) and F̄V (t) are in vector form but could be converted to vehicle
properties quite simply. For F̄P (t):[4]

θwheel(t) = arctan

(
F̄Py

F̄Px

)
(3)

F̄V (t) may only need to be adjusted by a factor for converting acceleration or break pressure
from actual motion adjustment.

Because of the trivial conversion we will neglect converting resulting unit-vectors into
θwheel(t) or actual acceleration/break pressure throughout this paper.

2 Pursuit Curves

2.1 Elementary Pursuit Curves

A pursuit curve is the curve that’s formed when moving with uniform velocity towards
another point in uniform velocity. Though the pursuit is a relatively simple process easily
modeled by a differential equation, the pursuit curve itself is more complicated and only
solvable in certain special cases. It still remains valuable to solve these special cases to speed
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up processing of the special cases. Though the goal of most pursuit problems is to catch up
to the target, our goal is rather to follow the target indefinitely. For this reason we must
choose our constant c = 1, making the pursuit problem indefinite.[2]

Whether classic or not, a pursuer’s curve can be expressed like so:[2]

X(t) = x(t) + λx′(t), Y (t) = y(t) + λy′(t) (4)

Rewritten we get

x′(t) =
X(t)− x(t)

λ
, y′(t) =

Y (t)− y(t)

λ
(5)

If we combine x and y to F̄ and X and Y to L̄ we get...

F̄ ′(t) =
L̄(t)− F̄ (t)

λ
(6)

It is now clear how we got Equation (2). We need to limit motion by a rate constant R which
combines with constant λ, then we need the unit-vector of L̄(t) (defined as λ(x̄) = x̄

||x̄||) to
only attain the direction towards the intended position. With the 1-d vector LV the unit-
vector will naturally come out to either plus or minus 1.

2.2 Autonomous Vehicle Path Following

The ultimate goal of this paper is to apply to an autonomous vehicle. The pursuit strategy
seems to be a feasible one when applied to the problem of adjusting vehicle rotation to
follow a planned path.[4, 5, 6] Perhaps it is also feasible to apply to the velocity if we think
of velocity as a position we can apply fundamentally the same pursuit strategy. One reason
this seems like it might be feasible is because position and velocity often go hand-in-hand,
and the same type of path smoothing we hope to gain from following position should smooth
just as well for velocity. Path planning becomes a problem of selecting position-velocity pairs
relative to the vehicle (A job that can be done by the visual apparatus[4]).

Though in this paper we define path following in a way which forms a complete pursuit
curve, it may make more sense to continue using the pursuit strategy but to always consider
velocities and positions as relative to our current velocity and position.[1, 4, 5]

3 Experimental Results

A program was created which applies our pursuit strategy eliminating the necessity of actu-
ally solving non-linear differential equations. We will analyze different common situations in
driving to assess the validity of this method and try to solve them mathematically. Math-
ematical solutions, assuming they are less computationally complex than programatically
applying the pursuit strategy, can be substituted for the specific cases for which they are
defined.

Note that the figures shown were generated straight from the implementation of F ′(t)
by python. For simplicity RP = RV = 1, the paths are crafted by myself but should be
generatable by a path planning algorithm.
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3.1 Straight Driving

The case of straight driving is a simple case where the position of the vehicle is unchanged
while the velocity is such as driving down a road from stop sign to stop sign.

Figure 1: L(t)= [[0, 1], 0], [[0, 1], 5], [[0, 1], 0]

F ′(t) = [LP (0), RV λ(LV (t), FV (t))]

The equation is then simplified to:

F ′
V (t) = RV λ(LV (t), FV (t)) = RV

LV (t)− FV (t)

||LV (t)− FV (t)||
;F (0) = 0

F ′
V (t) = ±RV

FV (t) = ±RV × t
That-is, the velocity can be solved for at any moment in time by multiplying RV × t. This,
though simple means for straight driving we can simplify the algorithm to 1 calculation per
step as opposed to t

RV
calculations.

3.2 Lane Changing

The case of lane changing is also relatively simple. It involves maintaining a constant velocity
but adjusting the angle of the vehicle such that the velocity brings us into the next lane over.

Figure 2: L(t)= [[0, 1], 1], [[1, 1], 1], [[0, 1], 1], [[0, 1], 1], [[-1, 1], 1], [[0, 1], 1]
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F ′(t) = [RPλ(LP (t), FP (t)), LV (0)]

The equation is then simplified to:

F ′
P (t) = RPλ(LP (t), FP (t)) = RP

LP (t)− FP (t)

||LP (t)− FP (t)||
;Fy(t) = K,Fx(0) = 0

FP,x = RPLP (t)

∫
1√

LP (t)2 + FP (t)2
−RP

∫
FP (t)√

LP (t)2 + FP (t)2

FP,x = RP

[
LP (t) ln(

√
LP (t) + FP (t)2 + FP )−

√
LP (t)2 + FP (t)2

]
Already, though it is still possible to attain an integral, the result outweighs the simple
algorithmic process of simply stepping through the differential equation.

3.3 Street Intersection

Street intersections are the next big form of motion that are often encountered during an
autonomous vehicle route. By simply the pursuit strategy we can complete a right or left
turn as before, with a short L(t).

Figure 3:

L(t) = [[0, 1], 1], [[−1, 1], 1], [[−1, 0], 1]]

Figure 4:

L(t) = [[0, 1], 1], [[1, 1], 1], [[1, 0], 1]]

Again:
F ′(t) = [RPλ(LP (t), FP (t)), RV λ(LV (t), FV (t))]

Assuming the case of a right turn with a constant velocity our results are much like with
lane changing but now with both x and y components.

F ′
P (t) = RPλ(LP (t), FP (t)) = RP

LP (t)− FP (t)

||LP (t)− FP (t)||
;Fy(0) = 0, Fx(0) = 0

FP,x = RP

[
LP,x(t) ln(

√
LP,x(t) + FP,x(t)2 + FP,x)−

√
LP,x(t)2 + FP,x(t)2

]
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FP,y = RP

[
LP,y(t) ln(

√
LP,y(t) + FP,y(t)2 + FP,y)−

√
LP,y(t)2 + FP,y(t)2

]
And again these solutions are much less useful than simply applying a pursuit strategy
iteratively.

3.4 Obstacle avoidance

Obstacle avoidance would be handled entirely by the path-planning algorithm. Some sources
seem to enter different states when a collision is evident (due to an obstacle).[5, 6] Ours would
behave the same as lane changing or any other path. One might expect reaction to be slightly
slower because the path planner would have to detect the evident collision and update the
path and let the algorithm follow it out of collision. But by increasing RV the acceleration
will increase dramatically getting the following algorithm to avoid swiftly.

This requires that R not be a constant as it is treated in this paper. With R as a constant,
our algorithm is helpless in the necessity of a swift change of motion.

4 Conclusion

Though the results look quite decent with the examples I chose, further research should be
made to solidify this method. Some things that might be changed include:

1. Adding RP and RV finding algorithms, maintaining values of 1 is unreasonable; 1
doesn’t allow us to use floating point numbers.

2. Looking into the relation between LP and LV to simplify the path further.

3. Making LP a position rather than an orientation. This would make the path planning
algorithm simpler.

4. Developing a better way to check that we’ve reached a destination (in the program).

5. Computing all values relative to the current position and velocity ([[0, 0], 0]). This
should simplify and make more realistic our approach.

Pursuit Curves for Autonomous vehicle path following is certainly a valid approach, particu-
larly for adjusting position as done in other research[4, 5, 6] but also for velocity adjustments.
The specific approach taken in this paper has its value but the above mentioned points need
to be considered in order for an implementation to be feasible. This type of approach sim-
plifies the path planning algorithm turning it into a problem of placing position-vector pairs
in virtual space to be followed and by the nature of the following, the path is smoothed.

6



References

[1] Carl E Mungan (2005). A classic chase problem solved from a physics perspective. Eur.
J. Phys. 26 985. doi:10.1088/0143-0807/26/6/005 Received 6 April 2005, in final form 22
May 2005. Published 8 August 2005. 2005 IOP Publishing Ltd

[2] J. C. Barton and C. J. Eliezer (2000). On pursuit curves. The Journal of the
Australian Mathematical Society. Series B. Applied Mathematics, 41, pp 358-371.
doi:10.1017/S0334270000011292.

[3] O. Ibidapo-Obe, O.S. Asaolu, A.B. Badiru, Generalized solutions of the pursuit problem
in three-dimensional Euclidean space, Applied Mathematics and Computation, Volume
119, Issue 1, 25 March 2001, Pages 35-45, ISSN 0096-3003

[4] Xiang Yin, Noboru Noguchi, Jongmin Choi, Development of a target recognition and
following system for a field robot, Computers and Electronics in Agriculture, Volume 98,
October 2013, Pages 17-24, ISSN 0168-1699

[5] Xunyu Zhong, Xungao Zhong, Xiafu Peng, Velocity-Change-Space-based dynamic mo-
tion planning for mobile robots navigation, Neurocomputing, Volume 143, 2 November
2014, Pages 153-163, ISSN 0925-2312

[6] Xing-Jian Jing, Behavior dynamics based motion planning of mobile robots in uncer-
tain dynamic environments, Robotics and Autonomous Systems, Volume 53, Issue 2, 30
November 2005, Pages 99-123, ISSN 0921-8890

7


	Introduction
	Autonomous Vehicle Motion

	Pursuit Curves
	Elementary Pursuit Curves
	Autonomous Vehicle Path Following

	Experimental Results
	Straight Driving
	Lane Changing
	Street Intersection
	Obstacle avoidance

	Conclusion

